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Macrocyclic polyethers bearing one and two spirooxetane rings are easily obtained in one step from polyethyl- 
ene glycols and 3,3-bis(halomethyl)oxetanes. Crystalline complexes of these cyclic polyethers are readily ob- 
tained from alkali and alkaline earth metal thiocyanates or iodides. For complexes with KSCN, incorporation 
of the carbon bearing a spirooxetane ring is shown to cause a 10- to  100-fold decrease in stability constant. 
Some new macrocycles containing sulfide groups are also described. 

The  original work by Pedersenl and subsequent studies 
by FrensdorfP established tha t  macrocylic polyethers of ap-  
propriate ring size complex strongly with cations of the 
alkali and alkaline earth metals. In only a few cases has 
later work on macrocyclic polyethers dealt with rings hav- 
ing additional functionality. In particular, the  problem of 
incorporating a polymerizable function into such mole- 
cules has apparently been approached exclusively through 
substituted benzo derivatives. In one case,3 a dibenzo- 
crown polyether was converted to a mixture of isomeric 
diamines which was then incorporated into polyamides. In 
another case,4 styrene analogs of monobenzocrowns were 
prepared and  homopolymerized. Since these syntheses re- 
quire several steps to produce the functionalized macrocy- 
clic polyether, a more direct route seemed desirable. This 
paper describes the one-step synthesis of macrocyclic 
polyethers containing a spirooxetane uni t  starting from 
available materials. 

Synthesis. 3,3-Bis(chloromethyl)oxetane ( l ) ,  readily 
obtained from p e n t a e r y t h r i t ~ l ~  and itself polymerizable 
cationically,6 is subject to anionic displacement of chlo- 
rine, leaving the oxetane ring intacta5 Polyethylene glycols 
have now been found to  react with 1 in the presence of 
strong base to yield macrocyclic polyethers of types 2 and  
3 in u p  to 60% yield of isolated product. Dipolar aprotic 

O K C '  + H(OCH,CH,),OH - 
Cl 

1 

L 3 
solvents such as  dimethylformamide can be used, but  
tert-butyl alcohol has proved most convenient, since i t  
can be used as  purchased and  is easily removed after reac- 
tion is complete. At reflux in tert-butyl alcohol, reaction 
of 1 with a polyethylene glycol salt is complete in 4-5 
days. Under similar conditions, 3,3-bis(bromomethyl)oxe- 
tane reacts in less than 1 day to give similar products. Po- 
tassium tert-butoxide was used in most cases, bu t  i t  has 
been demonstrated tha t  sodium hydroxide or potassium 
hydroxide can be employed with only a slight yield loss. 
The yields cited were obtained a t  concentrations of ca. 10 
wt % of each reactant, providing evidence tha t  a template 
effect7 is operating even in the protic solvent, tert-butyl 
alcohol. Except where excess tert-butoxide was included 
as  a reactant, no trace of butoxy group was seen in the  
volatile products. 

The  product ratio 2:3 is governed by ring size. For cases 
in which 2 contains a macrocyclic polyether ring of 10 or 

Table I 
Spirooxetanes from the Glycols HO (CHICH,O),H 

Glycol 
n registry no. 

1 107-21-1 
2 111-46-6 
3 112-27-6 
4 112-60-7 
5 4792-15-8 
7 5617-32-3 
9 3386-18-3 

2, 70 

42 
0.2 
30-35 
53 
60 
35 
11 

yield 
Registry 3,  % Registry 

no. yield no. 

51652-65-4 0.7 51652-71-2 
51652-66-5 47 51652-72-3 
51065-93-1 20-25 51065-94-2 
51652-67-6 
51652-68-7 
51652-69-8 3 51652-73-4 
51652-70-1 

13 atoms, i .e . ,  products derived from diethylene glycol 
and triethylene glycol where n = 2 and 3, steric crowding 
results in a low ratio. For n > 3, formation of 2 is favored 
and the ratio is correspondingly high. The special case of 
glycol leads mainly to 2 (n = 1) with less than 1% of 3 (n 
= 1). 

Table I shows the isolated yields for each glycol studied. 
For most n > 3, the  yield of 3 was not determined; crys- 
tallization of 3 (n = 7) led to the isolation of this 50-mem- 
bered-ring product in low but  significant yield. 

Dispirooxetanes which are  difficult to  obtain in reason- 
able yield by the one-step procedure, as  well as  dispiroox- 
etanes having two different polyether bridges, can be 
made by a three-step route in which the two glycol mole- 
cules are introduced separately. An example is the syn- 
thesis of 3 (n = 1) according to  the following scheme, 

+ HOCH,CH,OH - H+ 

c1 
1 

HOCH,CH,OH 

0 t 

KO-t.Bu 

n 

3 (n = 1) 

Even at temperatures over loo", sulfuric acid is an  inef- 
fective catalyst for the first step, presumably because in- 
termediate sulfate ester derived from the oxetane does not 
solvolyze readily. Trifluoromethanesulfonic acid proved to 
be a useful catalyst. 

Extension of the one-step synthesis to dimercaptans was 
feasible, although a pronounced tendency to form polymer 
necessitated the use of dilute solutions. A greatly reduced 
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template effect is not surprising, since sulfur coordinates 
poorly to alkali metal i o n s 2  Bis(2-mercaptoethyl) ether 
gave both monooxetane 4 and dioxetane 5, while bis(2- 
mercaptoethyl) sulfide gave only dioxetane 6. 

O(CH,CH,SH), 

4 

I Af-7 

I 
5 

1 

S(CH,CH,SH), msn 
\ - - - o x :  NaOH LJLJ s :-->c. 

6 

Determination of the mono- and dispirooxetane struc- 
tures rested on their nmr spectra, as well as on elemental 
analyses, infrared spectra, and  molecular weight measure- 
ments. For products containing only oxygen as heteroa- 
tom, the isolated methylene and  ethylene units appear as 
singlets a t  positions progressively further upfield as the 
distance from the oxetane ring increases. All ethylene 
units beyond those nearest the oxetane ring appear to- 
gether as a broadened singlet. Figure 1 schematically il- 
lustrates some observed spectra along with those of refer- 
ence oxetanes. Infrared absorption(s) a t  10-10.5 p are 
characteristic of the oxetane ring.5 

Complex Formation. Stuart-Briegleb models indicated 
a minimum amount of space available inside the four-oxy- 
gen macrocycle, 2 (n = 3). In accord with the model, lith- 
ium thiocyanate formed a stable, crystalline, 1: 1 complex 
with 2 (n = 3), whereas sodium thiocyanate formed a 
weak complex easily distrupted by ether extraction of the 
macrocycle, and a solid complex with potassium thiocy- 
anate could not be obtained. The  polyethers 2 (n  = 4) and 
2 (n = 5) formed well-defined 1:l complexes with sodium 

a b c  d : I  

a b c  d 

4.5 4.0 3.5 3.0 1.17 ox:: a b  a b 

I 4.5 4.0 3.5 3 0  

o b 

Figure 1. lH chemical shifts observed with and without K+ pres- 
ent. Shifts are given in parts per million for 20% solutions in ace- 
tone-&. Dotted lines designated by primed letters are for chemi- 
cal shifts with 1 equiv of KSCN present. 

and potassium thiocyanate, but  lithium thiocyanate gave 
glassy complexes which resisted attempts a t  crystalliza- 
tion. These 1:l complexes are assumed to involve a near- 
planar structure in which the cation is centrally located 
inside the ring with oxygen atoms oriented toward the 
cation, similar to the structures determined for other 1:l 
M+-macrocyclic polyether complexes.g* Note tha t  in the 
case of 2 ( R  = 4) and  KSCN, the addition of one carbon 
atom to the  ring allows K+ to fit inside sufficiently well to 
favor a 1:l complex, whereas crown polyethers containing 
five oxygen atoms form 2:l  sandwich structures with 
K+.8b 

The dispirooxetane 3 (n  = 3) preferentially forms 2:l  al- 
kali metal thiocyanate-polyether complexes, a stoichi- 
ometry apparently not observed by Pedersen,l and re- 
ported by Truter, et al., for similar 2:1 complexes involv- 
ing K+,  but not N a + .  The smaller polyether ring in 3 (n  
= 2) accommodates fewer sodium ions and  even fewer po- 
tassium ions. 

Ability to complex alkaline earth metal ions was dem- 
onstrated in one case; calcium iodide formed a 1:l com- 
plex with 2 ( n  = 5 ) .  

Table I1 
Katab for K+-CH30H Systems at 25 O 

Log stability Log stability 
Polyether constant Compd constant 

220 

5.00 

3.49 

ti10 

208 

3.81 

243 

167 

<0.7 
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Complexation with alkali metal cations produced only 
small (ca. 0.1-0.3 ppm) downfield shifts in the large ring 
proton nrnr  position^.^ Furthermore, the deshielding of 
protons on the  oxetane ring was as  great as  or greater than 
tha t  of the  macrocyclic protons. In  one case, t ha t  of 2 ( n  
= 5) -KSCN,  where a particularly stable complex with 
potassium ion was present (v ide infra), splitting of the  
protons in one ethylene unit was induced by the fixed ge- 
ometry. The effects of metal ions on the  IH nmr spectra 
are exemplified in Figure 1. 

Ability to form crystalline complexes with well-defined 
melting points and  stoichiometry is, of course, not a reli- 
able indicator of relative stability. Although the macrocy- 
clic polyethers prepared in this work form such com- 
plexes, their stability in the  presence of such strongly 
coordinating solvents as  water and  methanol can be ex- 
pected to vary greatly. Stability constants of selected spi- 
rooxetane derivatives with potassium ion in methanol so- 
lution are presented in Table II.lo For comparison, similar 
values for a n  acyclic polyether and  several crown ethers 
are also included in Table II. Jus t  as  has been observed 
with the  crown ethers, cyclic polyethers containing an  ad-  
ditional carbon bearing a spirooxetane uni t  form the most 
stable complexes with K +  when six ether oxygen atoms 
are present. Inspection of Table 11 reveals tha t  a penalty 
of one to two powers of ten in stability constant results 
from each spirooxetane unit incorporated into the ring. 

Rather surprisingly, polysulfide 5 forms a crystalline 
complex with sodium thiocyanate. The 2 : l  ligand-NaSCN 
stoichiometry suggests tha t ,  unlike complexes of the relat- 
ed polyethers, this complex has  a sandwich structure with 
Na+ in the  center coordinated to four ether oxygen atoms. 
Both 5 and 6 form complexes with mercuric chloride with 
well-defined 1:l stoichiometry.ll 

Experimental Section12 
2,6,9-Trioxaspiro[3.6]decane (2, n = 1) and 2,6,9,13,16,19- 

hexaoxadispiro[3.6.3.6]eicosane (3, n = 1). A solution of 12.4 g 
(0.20 mol) of glycol, 47.0 g (0.42 mol) of potassium tert-butoxide, 
and 31.1 g (0.20 mol) of 3,3-bis(chloromethyl)oxetane in 500 ml of 
tert-butyl alcohol was stirred and refluxed under nitrogen for 2 
days. The mixture was cooled, addition of the three reactants re- 
peated, and reaction continued for an additional 5 days. Evapo- 
ration of volatiles to 50' (0.5 mm) and continuous extraction of 
the residue with pentane gave 58.9 g of high-boiling oil along with 
0.8 g of 2,6-dioxaspiro[3.3]heptane as a volatile solid. Sublimation 
of this solid gave 0.31 g (0.8%) of pure dioxaspiroheptane: mp 
89-90" sub1 (litS5 mp 90'); mass spectrum m / e  100 (parent+), 70 
(Pf - CH20); ir (Nujol) 10.31 and 10.92 p (oxetane ring); IH 
nrnr 6 4.70 ppm (s). 

Distillation of the high-boiling oil gave 24.2 g (42%) of 2, n = 1: 
bp 97-99" (10 mm); ir 3.41 and 3.48 (saturated CH), 8.8-9.1 
(COC), 10.19 and 10.85 P (oxetane ring); l H  nmr 6 4.36 (s, 1, oxe- 
tane CH2), 3.99 (9, 1, CCHZ), and 3.63 ppm (s, 1, OCH2CH20). 

Anal. Calcd for C7H1203: C, 58.32; H, 8.40; 0, 33.29. Found C, 
57.99; H, 8.23; 0, 32.89. 

Isolation of solid from the distillation residue gave, after recrys- 
tallization from ether, 0.42 g (0.7%) of 2,6,9,13,16,19-hexaoxadi- 
spiro[3.6.3.6]eicosane (3, n = l), mp 163-165", recrystallized from 
acetone for analysis: mass spectrum m/e 288 (weak parent+), 289 
(weak P + H+), 258 (strong P+ - CH20); ir (Nujol) 8.7-9.1 
(COC), 10.29, 10.42, and 10.68 c1 (oxetane); lH nmr F 4.30 (s, 1, 
oxetane CH2), 3.80 (s ,  1, CCHZ), and 3.63 ppm (s, 1, 
OCHzCHzO). 

Anal. Calcd for C1&2406: C, 58.32; H, 8.40. Found: C, 58.88, 
58.92; H, 8.05, 8.47. 

Stepwise Synthesis of 3, n = 1. As catalyzed by sulfuric acid, 
the reaction of polyethylene glycols with bis(chloromethy1)oxe- 
tane is unusually sluggish. However, trifluoromethanesulfonic 
acid a t  elevated temperatures does catalyze the addition of glygol 
to this oxetane to form 2,2,9,9-tetrakis(chloromethyl)-4,7-dioxa- 
decane-1,lO-diol as a major product. Reaction of the bulk mixture 
gave only 10% of crude 3-chloromethyl-3-[6-(3'-chloromethyl-3'- 
oxetanyl)-2,5-dioxahexyl]oxetane after treatment with base, a low 
yield owing to excessive polymerization in the first step. Use of a 

solvent (CH2C12 glyme, or CHC12CHC12) resulted in a yield of bis- 
oxetane of 32-42%. 

A mixture of 24.8 g (0.40 mol) of glycol, 128.0 g (0.80 mol) of 
3,3-bis(chloromethyl)oxetane, 0.5 ml of trifluoromethanesulfonic 
acid, and 160 ml of sym-tetrachloroethane was heated at 110" for 
5 days. Solvent was removed under vacuum, 50 ml of xylene was 
added, and volatiles were again removed under vacuum. The vis- 
cous residue was dissolved in 300 ml of tert-butyl alcohol, 32.0 g 
(0.80 mol) of sodium hydroxide was added, and the mixture was 
stirred and heated. After an initial exothermic reaction carried 
the temperature to SO", the mixture was heated a t  70" overnight. 
Neutralization with concentrated HCl showed that 84% of the 
base had reacted. The mixture was filtered and volatiles were re- 
moved from the filtrate to give 127 g of residual oil. Continuous 
extraction of this oil with pentane yielded 120 g of high boilers in 
the extract. Distillation of this oil gave 40.2 g (34%) of the bisoxe- 
tane: bp 110-115" (0.05 1);  ir 3.38 and 3.47 (saturated CH), 9.0 
(broad COC), 10.19 (oxetane), and 13.78 P (CC1); IH nmr 6 4.36 
( s ,  2, oxetane), 3.91 (9, 1, CHzCl), 3.77 (s, 1, CCHzO), and 3.67 

Anal. Calcd for ClzH20Cl204: C, 48.17; H, 6.74; C1, 23.70. 
Found: C, 48,31; H, 6.44; C1,23.97. 

A solution of 29.9 g (0.10 mol) of the bisoxetane, 6.2 g (0.10 
mol) of glycol, and 24.0 g (0.21 mol) of potassium tert-butoxide in 
500 ml of tert-butyl alcohol was stirred and refluxed for 12 days. 
The reaction mixture was neutralized with concentrated HCl and 
filtered and the filter cake was extracted with 3 X 100 ml of 
CH2C12. Evaporation of the CH2ClZ solution gave 2.8 g of 3, n = 
1. Evaporation of the mother liquor to 50" (0.5 mm), treatment of 
the residue with 20 ml of ether, and filtration gave 9.9 g of 3, n = 
1. The combined solids were recrystallized by continuous extrac- 
tion with ether in a Soxhlet, yielding 9.1 g (32%) of 3, n = 1, mp 
163-165", not depressed by admixture with an authentic sample. 
2,6,9,12-Tetraoxaspiro[3.9]tridecane (2, n = 2) and 

2,6,9,12,16,19,22,25-Octaoxadispiro[3.9.3.9]hexacosane (3, n = 
2). Reaction of 228 g (2.04 mol) of potassium tert-butoxide, 106 g 
(1.00 mol) of distilled diethylene glycol, 155 g (1.00 mol) of 3,3- 
bis(chloromethyl)oxetane, and 3.0 1. of tert-butyl alcohol a t  reflux 
was continued for 2 days. Then the addition of tert-butoxide, gly- 
col, and oxetane was repeated, and the reaction mixture was re- 
fluxed and stirred for 3 days. Another repeat addition was made 
and reaction was continued for 2 days. A last repeat addition was 
made, and the reaction mixture was refluxed for 6 days, filtered, 
and volatiles removed. The residual mixture of solid and oil, 770 
g, was kept molten a t  90" while being continuously extracted with 
heptane for 3 days. The cold heptane extract was filtered, and the 
solid thus isolated was extracted in a Soxhlet with ether. Filtra- 
tion of the chilled ether extract gave 342 g of 3, n = 2, mp 84.5- 
85.5'. Second and third crops raised the yield to 357 g (47%) of 
purified 3, n = 2. An analytical sample was prepared by recrys- 
tallization from ether: mp 86-87"; ir (Nujol) 8.7-9.1 (COC), 10.05, 
10.32, 10.55, and 10.76 p (oxetane ring); IH nmr 6 4.36 (s, 1, oxe- 
tane CH2),3.73 ( s , l ,  CCH2), and3.63 ppm (s,2, OCH2CH20). 

Anal. Calcd for CisHs20s: C, 57.43; H, 8.57; 0, 34.00; mol wt, 
376.5. Found: C, 58.02; H, 8.79; 0, 33.68; mol wt, 390 (ebulliosco- 
pic in benzene). 

Distillation of the filtrate from a similar preparation of 3, n = 
2, on a 2-mol scale gave 1.44 g of impure 2, n = 2, bp 100-120" 
(0.3 mm). The crude distillate was extracted with 20 ml of ligroin, 
the extracts were evaporated, the residue was dissolved in 20 ml 
of water and insolubles were removed by extraction with 2 X 2 ml 
of ligroin. The aqueous layer was evaporated to give 0.68 g (0.2%) 
of 2,6,9,12-tetraoxaspiro[3.9]tridecane: mass spectrum m / e  188 
(weak parent+), 189 (weak P + H+), and 158 (strong P+ - 
CH2O); ir 3.45 and 3.52 (saturated CH), 8.7-9.2 (COC), 10.08, 
and 10.7 LL (oxetane ring); l H  nmr 6 4.28 (s, 1, oxetane CH2), 3.92 
(s, 1, CCHz) and 3.62 ppm (s, 2, OCH2CH20) with weak impuri- 
ty peaks also present. 

Anal. Calcd for CgH16O4: C, 57.43; H, 8.57. Found: C, 57.38; H, 
8.48. 
2,6,9,12,15-Pentaoxaspiro[3.12]hexadecane (2, n = 3) and 

2,6,9,12,15,19,22,25,28,31-Decaoxadispiro[3.12.3.12]dotriacon- 
tane (3, n = 3). A mixture of 233.4 g (2.08 mol) of potassium tert- 
butoxide, 150.2 g (1.00 mol) of triethylene glycol, and 155.0 g (1.00 
mol) of 3,3-bis(chloromethyl)oxetane was heated a t  reflux in 3 1. 
of tert-butyl alcohol. Two additions, each of 75.1 g (0.50 mol) of 
triethylene glycol, 77.5 g (0.50 mol) of 3,3-bis(chloromethyl)oxe- 
tane, and 114.4 g (1.02 mol) of potassium tert-butoxide, were 
made at  2-3-day intervals, and reaction finally continued for 5 
days. Filtration and evaporation of volatiles gave residual oil 
which was extracted continuously with pentane for 3 days. Distil- 

(s, 1, OCH2CH20). 
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lation of the extract through a Vigreux column gave 150.3 g (32%) 
of 2,6,9,12,15-pentaoxaspiro[3.12]hexadecane and 119.9 g (26%) of 
crude 2,6,9,12,15,19,22,25,28,31-decaoxadispiro[3,12.3.12]dotri- 
acontane as a distillation residue which largely crystallized. 

Redistillation of 2, n = 3, through a spinning band still gave 
pure product: bp 97-98" (6 p ) ;  na% 1.4785; ir 3.40 (sh) and 3.47 
(saturated CH), 9.0 (broad COC), 10.02, and 10.25 p (oxetane 
ring); IH nmr d 4.30 (s, 1, oxetane CHs), 3.83 (9, 1, CCHZ), 3.62 
(s,2, OCHZCHZO), and 3.57 ppm (s, 1, OCHpCH20). 

Anal. Calcd for C1lHzoOa: C, 56.88; H, 8.68; 0, 34.44; mol wt, 
232. Found: C, 56,81; H, 8.73; 0, 34.41; mol wt, 232 (field ioniza- 
tion mass spectrum) I 

A sample of 3, n = 3, purified by recrystallization from acetone 
of the complex with KSCN and liberation from the complex by 
boiling xylene, crystallized, mp 52-53". 

Anal. Calcd for C22H40010: C, 56.88; H, 8.68; 0, 34.44; mol wt, 
464. Found: C, 56.91; H, 8.69; 0, 34.27; mol wt, 498 (ebullioscopic 
in benzene). 
3,3-Bis(tert-butoxymethyl)oxetane. Dimethylformamide is 

also a suitable solvent if all the reactants are added at  once. An 
attempt to carry out the reaction by addition of triethylene glycol 
and 3,3-bis(chloromethyl)oxetane to a solution of potassium tert- 
butoxide in dimethylformamide resulted in considerable substitu- 
tion of tert-butoxide groups for chlorine in the oxetane. 

A solution of 49.2 g (0.44 mol) of potassium tert-butoxide in 400 
ml of dry dimethylformamide was stirred and heated under a ni- 
trogen atmosphere. At 80-90', the mixture darkened considera- 
bly, so addition of 30.0 g (0.20 mol) of triethylene glycol and 31.0 
g (0.20 mol) of 3,3-bis(chloroethyl)oxetane in 200 ml of dimethyl- 
formamide was started. The temperature of the reaction mixture 
rose rapidly to 115" and remained near there until the addition 
was complete (45 min). After an additional 3 hr a t  110", the solu- 
tion was cooled and neutralized with 2 ml of acetic acid. After re- 
moval of the solvent under reduced pressure, the product was dis- 
solved in chloroform and the solution was filtered. Distillation of 
the filtrate gave a two-phase mixture of product and triethylene 
glycol, bp 40-100" (0.1 p ) .  Redistillation of the upper layer gave 
5.4 g (12%) of 3,3-bis(tert-butoxymethyl)oxetane: bp 44-46" (0.1 
h ) ;  ir 3.36 and 3.48 (saturated CH), 9.2 (broad COC), 10.20 p (ox- 
etane ring); IH nmr (cC14) 6 4.25 (s, 2, oxetane CHz), 3.52 (s, 2, 
CCHz), and 1.17 ppm [s, 9, C(CH3)31. 

Anal. Calcd for ClaH2603: C, 67.78; H, 11.37. Found: C, 67.91; 
H, 11.56. 
2,6,9,12,15,18-Hexaoxaspiro[3.15]nonadecane (2, rz = 4). 

Reaction of 38.8 g (0.20 mol) of tetraethylene glycol, 47.0 g (0.42 
mol) of potassium tert-butoxide, and 31.0 g (0.20 mol) of 3,3-bis- 
(chloromethy1)oxetane was carried out a t  reflux in 500 ml of tert- 
butyl alcohol. A second, equivalent addition of the three reagents 
was made after 1 day. Distillation of the pentane-soluble product 
in a molecular still gave 58.2 g (53%) of 2,6,9,12,15,18-hexaoxaspi. 
ro[3.15]nonadecane as a colorless oil: bp 105-108" (0.2 p ) ;  nZ4u 
1.4771; mp 28-30"; ir 3.40 (sh) and 3.47 (saturated CH), 8.7-9.1 
(COC), 10.23, and 10.68 p (oxetane ring); IH nmr b 4.32 (s, 1, ox- 
etane CH3. 3.73 (s, 1, CCHz), 3.59 (s, 2, OCH~CHZO), and 3.55 
ppm (s,2,OCHzCHzO). 

C. 56.49: H. 8.70: 0.34.78. 
Anal. Calcd for C13H2406: C, 56.50; H, 8.75; 0, 34.74. Found: 

Equivalent or' better yields were obtained with 3,3-bis(bromo- 
methy1)oxetane. Yields were nearly as high when potassium tert- 
butoxide was replaced by NaOH (52% yield) or KOH (47% yield) 
in reactions involving 3,3-bis(bromomethyl)oxetane. 
2,6,9,12,15,18,21-Heptaoxaspiro[3.18]docosane (2, n = 5). 

Pentaethylene glycol was prepared by dropwise addition of 468 g 
(2.5 mol) of 1,2-bis(2-chloroethoxy)ethane to a solution of 331 g 
(5.0 mol) of 85% KOH pellets in 930 g (15 mol) of glycol stirred 
and heated at 110" under nitrogen. The addition was carried out 
a t  a rate sufficient to maintain a reaction temperature of 120" 
with no external heating (2 hr). The mixture was stirred and 
heated at  120" for an additional 3 hr, cooled, acidified with con- 
centrated HC1, and distilled. Pentaethylene glycol, 213.9 g (36%), 
nZ7u 1.4582, was obtained as a fraction of bp 148-154" (20 p )  .I3 

A mixture of 600 ml of tert-butyl alcohol, 47.0 g (0.42 mol) of 
potassium tert-butoxide, 47.6 g (0.20 mol) of pentaethylene gly- 
col, and 31.0 g (0.20 mol) of 3,3-bis(chloromethyl)oxetane was 
stirred at  reflux under nitrogen for 5 days. The mixture was 
cooled and filtered, and the filter cake was rinsed with tert-butyl 
alcohol and dried to give 30.1 g of KC1. Removal of volatiles from 
the filtrate to 50" (0.5 mm) afforded 67 g of viscous residue, which 
was extracted continuously with pentane for 3 days. The extracts 
yielded 49.3 g of high-boiling residue. Distillation gave 38.5 g 
(60%) of 2,6,9,12,15,18,21-heptaoxaspiro[3.18]docosane, mainly bp 

136-137" (1 p )  in a molecular still: n25.5D 1.4741; ir 3.40 (sh) and 
3.47 (saturated CH), 9.0 (COC), and 10.21 p (oxetane ring); IH 
nmr B 4.29 (6, 1, oxetane CHZ), 3.65 (8, 1, CCHz), 3.56 (s, 2, 
OCHzCHzO), and 3.32 ppm (s, 3, OCHZCHZO). 

Anal. Calcd for C16H2~0,: C, 56.23; H, 8.81. Found: C, 56.51; 
H, 9.18. 

An essentially equivalent result was obtained with 3,3-bis(bro- 
momethy1)oxetane in place of 3,3-bis(chloromethyl)oxetane. 
2,6,9,12,15,18,21,24,27~Nonaoxaspiro[3.24]octacosane (2, n = 

7) and 2,6,9,12,15,18,21,24,27,31,34,37,40,43,46,49,52,55-octade- 
caoxadispiro[3.24.3.24]hexapentacontane (3, n = 7). To prepare 
heptaethylene glycol, a mixture of 1590 g (15 mol) of diethylene 
glycol and 200 g (5.0 mol) of NaOH pellets was stirred and heated 
to 110" under nitrogen. Dropwise addition of 468 g (2.5 mol) of 
1,2-bis(2-chloroethoxy)ethane was carried out at a rate sufficient 
to keep the temperature near 120" without external heating; addi- 
tion time was 1.5 hr. The mixture was heated and stirred at  120" 
for another 3 hr, cooled, filtered, and distilled through a Vigreux 
column. Heptaethylene glycol was obtained as 270.6 g (33%) of an 
oil, bp 207-213" (4.5 p ) ,  nZ6D 1.4627.13 

Reaction was carried out in 700 ml of tert-butyl alcohol using 
two additions, each of 65.2 g (0.20 mol) of heptaethylene glycol, 
47.0 g (0.42 mol) of potassium tert-butoxide, and 31.0 g (0.20 mol) 
of 3,3-bis(chloromethyl)oxetane. Distillation of the pentane-solu- 
ble products in a molecular still gave 58.0 g (35%) of 2, n = 7: bp 
182-183" (0.3 p ) ;  ir 3.48 (saturated CH), 8.7-9.2 (COC), 10.23, 
and 10.65 1.1 (oxetane ring); IH nmr S 4.37 (s, 1, oxetane CHd, 
3.72 (s, 1. CCHd, 3.63 (s, 2, OCHZCHZO), and 3.60 ppm (9, 5, - -  .. 

OCHzCHzO). 
Anal. Calcd for ClgHssOs: C, 55.87; H, 8.88; 0, 35.25. Found: 

C. 55.62: H. 8.66: 0.35.02. 
The distillation residue slowly deposited crystals on standing. 

The mixture of solid and oil was crystallized from 1:l ether-lig- 
roin at  -8O", from 1:l ether-acetone at  -80", from 1:l ether-ace- 
tone at  0", and finally from ether a t  0" to give 2.2 g of 3, n = 7, 
mp 42-43'. A second crop, 2.1 g, mp 40-41", was obtained by con- 
centration of the filtrates and two recrystallizations from ether a t  
0", bringing the yield to 4.3 g (2.6%): ir (Nujol) 8.7-9.2 (COC), 
10.07, 10.29, and 10.37 p (oxetane ring); IH nmr S 4.36 (9, 1, oxe- 
tane CHZ), 3.67 (s, 1, CCHz), 3.61 (s, 2, OCHZCHZO), 3.58 and 
3.57 ppm (two singlets, combined area 5,OCH&H20). 

Anal. Calcd for C3&7201s: c, 55.87; H, 8.88; 0, 35.25; mol wt, 
817. Found: C, 56.39; H, 8.58; 0, 34.82; mol wt, 798 (ebullioscopic 
in benzene). 

2,6,9,12,15,18,2 1,24,27,30,33-Undectioxaspir0[3.30]tetratria- 
contane (2, n = 9). A mixture of 2252 g (15 mol) of triethylene 
glycol and 200 g (5.0 mol) of NaOH pellets was treated with 468 g 
(2.5 mol) of 1,2-bis(2-chloroethoxy)ethane as described above. 
Distillation through a Vigreux gave 251.2 g (24%) of orange oil, bp 
235-249", n2% 1.4644. As expected for nonaethylene glycol, the 
product solidified slowly at VSi4 

Two additions, each of 82.8 g (0.20 mol) of nonaethylene glycol, 
47.0 g (0.42 mol) of potassium tert-butoxide, and 31.0 g (0.20 mol) 
of 3,3-bis(chloromethyl)oxetane, were made to a reaction carried 
out in 1 1. of tert-butyl alcohol as described above. From the pen- 
tane-soluble products there was isolated 22.0 g (11%) of 2, n = 9: 
bp 250-260" (1 p )  in a molecular still; ir 3.45 (saturated CH), 
8.7-9.1 (COC), 10.20, and 10.62 p (oxetane ring); IH nmr 6 4.37 
(s, 1, oxetane CHz), 3.70 (s, 1, CCHz), 3.63 (s, 2, OCHzCHzO), 
and 3.60 ppm (s, 7,OCHzCHzO). 

Anal. Calcd for C29H44011: C, 55.63; H, 8.93; 0, 35.44. Found: 
C, 55.88; H, 8.76; 0,35.76. 
2,9-Dioxa-6,12-dithiaspiro[3.9]tridecane (4) and 2,9,16,22- 

Tetraoxa-6,12,19,25-tetrathiadispiro[3.9.3.9]hexacosane (5). A 
mixture of 31.0 g (0.20 mol) of 3,3-bis(chloromethyl)oxetane, 27.7 
g (0.20 mol) of bis(2-mercaptoethyl) ether, 3.8 1. of absolute etha- 
nol, and 16.0 g (0.40 mol) of sodium hydroxide pellets was stirred 
and refluxed under nitrogen for 1 day. Addition of the oxetane, 
mercaptoethyl ether, and sodium hydroxide was repeated and 
reaction was continued for another day. The addition was repeat- 
ed once more and reaction was continued for an additional 3 
days. The reaction mixture was filtered, the filtrate was evapo- 
rated to 500 ml, and supernatant was decanted. The viscous resi- 
due was extracted with 3 X 100 ml of hot ethanol; then the com- 
bined supernatant and extracts were evaporated to give high- 
boiling residue. Continuous ether extraction of this residue, re- 
moval of ether from the extracts, and sublimation of the extract- 
ed product a t  100" (0.1 mm) gave 21.0 g (16%) of 4, mp 102-105". 
An analytical sample, mp 104-105", was prepared by resublima- 
tion at 75" (0.025 mm), followed by trituration of the sublimate 
with ether and drying: ir (Nujol) 9.03 (COC), 10.21, and 10.70 @ 



Macroheterocycles J.  Org. Chem., Vol. 39, No. 16, 1974 2355 

Table I11 
Complexes of Macrocycl ic  Polyethers 

Complex" 
Yield, Registry 

MP, ' C  70 no. 

2 (n  = 3) .LiSCN 
2 (a  = 3) .NaSCN 
2 (a  = 4) .NaSCN 

2 (n  = 5 ) . N a S C N  

2 (n = 5) .CaIQ.H*O 
2 [3 (n = 2) ] .3NaSCN 

3 (n  = 3) '2LiSCN 
3 (n =-3) 32NaSCN 

2 (6) . NaSCN 

2 (n  = 4) .KSCN 

2 (n = 5 ) . K S C N  

7[3 ( n = 2)] .8KSCN 

3 (n = 3) .2KSCN 

138-139 
164-165 
135.5-137 
105-109 
127-128 
124-126 
176-178 

103-105 
192-193 
165-166 
140-141 
167.5-169 

70 

57 
b 

25 
55 
72 
73 
77 
91 
96 
65 
82 
55 
87 

51652-74-5 
51652-75-6 
51652-76-7 
51652-77-8 
51652-78-9 
51652-79-0 
51731-29-4 
51652-80-3 
51652-81-4 
51652-83-6 
51652-84-7 
51652-85-8 
51652-87-0 

a Satisfactory analyses for C, H, N, and metal were re- 
corded except for the complexes with 2 (n = 3). Deliques- 
cent complex which could not be recrystallized owing t o  a 
tendency to lose ligand. 

(oxetane); IH nmr b 4.22 (s, 1, oxetane CHZ), 3.52 (s, 1, CCH2S) 
with rough triplets for AA'BB' a t  230, 226, and 220 (1, 
CHzCH20) and 172,167, and 162 Hz (1, CHzCHzS). 

Anal. Calcd for CsHleOzSz: C, 49.05; H, 7.32; S, 29.10; mol wt, 
220. Found: C, 49.49; H, 7.31; S, 28.61; mol wt, 221 (ebullioscopic 
in benzene). 

The involatile sublimation residue was kept molten at 90-95" 
and continuously extracted with heptane for 2 days. Evaporation 
of heptane from the extract and recrystallization from acetone 
gave 17.7 g of 5, mp 100-101". A second crop, 1.9 g, mp 98.5-loo", 
was also obtained, for a total of 19.6 g (15%) of 5. An analytical 
sample, mp 100.5-101.5", was prepared by recrystallization from 
acetone: ir (Nujol) 9.05 (COC), 10.15, and 10.53 fi  (oxetane); lH 
nmr 6 4.35 (s, 1, oxetane CH2) and 3.14 (s, 1, CCHzS) with rough 
triplets for AA'BB' at 229, 223, and 217 (1, CHzCH20) and 175.5, 
169.5, and 163.5 Hz (1, CH~CHZS). 

Anal. Calcd for C18H3204S4: C, 49.06; H, 7.32; s, 29.10; mol 
wt, 440.7. Found: C, 49.41; H, 7.75; S, 29.32; mol wt, 438 (ebul- 
lioscopic in benzene). 

Preparation of 4 and 5 in much more concentrated solution, 0.4 
us. 3.8 1. of absolute ethanol, resulted in only 2% of 4 and 4% of 5 
along with considerable polymer. 
2,16-Dioxa-6,9,12,19,22,25-hexathiadispiro[3.9.3.9]hexa- 

cosane (6). A mixture of 31.0 g (0.20 mol) of 3,3-bis(chlorometh- 
yl)oxetane, 30.8 g (0.20 mol) of bis(2-mercaptoethyl) sulfide, 16.0 g 
(0.40 mol) of sodium hydroxide, and 3.8 1. of absolute alcohol was 
stirred and refluxed under nitrogen for 1 day. Addition of the oxe- 
tane, sulfide, and sodium hydroxide was repeated and reaction 
was continued for another day. The addition was repeated once 
more and reaction was continued for an additional 3 days. Sol- 
vent was removed and the residue was heated at  70" during con- 
tinuous extraction with benzene for 15 days. Solvent was removed 
from the extract and the residue was heated at  95' during contin- 
uous extraction with heptane for 12 days. Removal of solvent 
from the extract gave a viscous residue from which only a little oil 
was volatilized at  100" (0.4 mm). Crystallization of the residue 
from toluene gave 15.6 g (11%) of 6, mp 129-131". An analytical 
sample was prepared by recrystallization from acetone: mp 131- 
132"; ir (Nujol) 10.21 and 10.57 p (oxetane); IH nmr (benzene-&) 
b 4.23 (5, 1, oxetane CHZ), 2.73 (s, 1, CCH2S) 2,54 (s, 2, 

A n d .  Calcd for CI~H~ZOZSB: C, 45.72; H, 6.82; S, 40.69; mol 
wt, 473. Found: C, 46.15; H, 6.84; S, 40.83; mol wt, 490 (ebullio- 
scopic in benzene). 

HgClz Complexes of the Macrocyclic Polysulfides 5 and 6. 
Solutions of 0.44 g (0.001 mol) of 5 and of 0.54 g (0.002 mol) of 
mercuric chloride in glyme were mixed and concentrated to 8 ml 
total volume to give 0.66 g (93%) of the 1:l complex, mp 174-175". 

SCHzCHzS). 

Recrystallization from glyme gave an analytical sample, mp 174- 
174.5". 

Anal. Calcd for C ~ ~ H ~ Z C ~ Z H ~ O ~ S ~ :  C, 30.35; H, 4.53; C1, 9.96; 
Hg, 28.17. Found: C, 30.36; H, 4.47; C1,9.89; Hg, 28.75. 

A similar reaction of 0.47 g (0,001 mol) of 6 and 0.54 g (0.002 
mol) of HgC12 gave 0.67 g (90%) of the 1:l complex, mp -205" 
dec. 

Anal. Calcd for C18H&12HgO~S6: C, 29.94; H, 4.33; c1, 9.53; 
Hg, 26.95. Found: C, 30.48; H, 4.51; C1,9.49; Hg, 27.59. 

Preparation of Complexes. Derivatives of the macrocyclic 
polyethers were prepared from alkali metal thiocyanates and cal- 
cium iodide starting with homogeneous acetone solutions of the 
salts. These solutions (filtered in the case of LiSCN to remove in- 
solubles) were added either to the liquid macrocycle or to a solu- 
tion of macrocycle in acetone. Concentration to low volume under 
nitrogen and scratching were generally effective in causing crys- 
tallization. Recrystallizations were from acetone or acetone-ether. 
Complexes of the monospiro macrocycles were far more soluble in 
acetone than those of the dispiro compounds and tended to be 
hygroscopic. Melting points were characteristically sharp. Ir spec- 
tra of the thiocyanate complexes were similar to those of the par- 
ent macrocycles with a band for thiocyanate added at -4.9 p, 
Alkali metal analyses by atomic absorption are considered to be 
less accurate than the other analyses; stoichiometry of the com- 
plexes was determined primarily by C, H, and N values. Table III 
summarizes the results of these syntheses. 
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